
Function Minimization and Automated Alignment of Kirkpatrick-Baez Mirrors

Jerry Lee
Beamline Controls and Data Acquisition Group, Advanced Photon Source Engineering Support Division

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439. U.S.A.; Contact: lee214@uiuc.edu

Abstract

There are numerous optimization tasks involved with
particle accelerator physics. Fitting twiss parameters,
maximizing dynamic apertures and reducing the beam’s focal
spot sizes are but just some of the instances of optimization
work being carried out in accelerators. On a broader sense, a
large class of problems in many fields of research can be
reduced to the issue of finding the smallest value taken on by
a function of one or more variable parameters. With that in
mind, this paper will be presenting several techniques which
can be used to minimize a multivariable function. The
underlying motivation for doing so lies in its potential
application to the automated alignment of Kirkpatrick-Baez
mirrors. Such mirrors are used to focus the X-ray beams
produced from synchrotron sources and their alignment can
be thought of as minimizing a function of six variables, two
for each direction that a mirror can move in. As such, the
optimization methods being presented can be used to obtain
the most efficient alignment of the Kirkpatrick-Baez mirrors.
The main issue that we will have to contend with when
mapping the alignment of the mirrors into a response function
is that of noise within the function itself. Thus, the
optimization techniques will have to be modified to account
for this. Also, the motors that control the mirrors can only
move in discrete steps. This means that the solutions obtained
from the minimization methods may not be implementable.
We will discuss strategies to overcome this issue as well.

Introduction

X-ray microscopy is being applied to an increasing
number of microstructural problems in materials science,
biology, and other disciplines. X-ray crystallography has even
been used to characterize the structure of one of the most
important protein complexes of the H5N1 virus, the most
common strain of bird flu, and this could be critical in
obtaining a cure for the deadly disease [1]. As the quality of
the X-ray beam is directly related to its focal spot size, it is
imperative that the beam be focused to as small an area as
possible. One way to focus the beam is with a setup known as
the Kirkpatrick-Baez mirror configuration, where two mirrors
are placed at glancing angles with respect to the beam. The
mirrors are highly polished metallic surfaces, usually coated
with platinum, and they are arranged orthogonally with
respect to one another so as to successively focus the X-rays
in the horizontal and vertical directions. A typical set-up of a
Kirkpatrick-Baez mirror focusing system is shown in the
diagram below.

By tilting the mirrors in the x, y and z planes, the focal
spot size of the X-ray beam can be varied. World-renowned
research facilities have reported spot sizes of approximately a
micron in diameter. By properly adjusting the position of the
mirrors, it has been shown that this value can be obtained for
any similar set-up [2]. As such, the problem of minimizing a
function of up to six variables, which is the maximum degree
of freedom each mirror has, bears significant interest to us.
Thus, this paper will investigate the various minimization
techniques that can help achieve this goal. Of course, once
suitable minimization approaches have been identified,
strategies to modify these standard solutions to deal with the
issue of noise within the response function, as well as that of
the motors controlling the mirrors only being able to move in
discrete steps, will be outlined.

Figure 1. A typical set-up of a Kirkpatrick-Baez mirror
focusing system [2]. Note the positions of the orthogonally
arranged mirrors. (Picture courtesy of Bakulin)

Grid Search

Initially, we shall be considering functions of just one
variable, since almost all problems can be understood most
easily in this simplest case and also because some
multivariable algorithms contain steps that require one-
dimensional minimization techniques. We shall begin our
analysis of the various function minimization techniques with
the simplest of them all – the grid search method. A grid
search consists of choosing equally spaced points within the
range of the single parameter to be evaluated, since we are
dealing with one-dimensional problems. The function is
evaluated at each of the chosen points, and the lowest value
found is retained. If the spacing between the points is ∆x,

then one of the points is sure to be within of the true

minimum, although technically speaking, it may not be the

point corresponding to the lowest value. Nonetheless, if the
function does not vary too much over distances in the order
of ∆x, then one would assume that this method gives the
minimum within a range of about ∆x [3].

 The grid search method is absolutely convergent and is
stable to all sorts of functions. However, it is extremely
inefficient. If the function does not vary too much over a
distance of ∆x, then many of the function evaluations become
unnecessary, especially those in regions where the function
value is known to be large. In other words, the algorithm does
not take into account what it has learnt about the function.
The inefficiency of the grid search method is best illustrated
with a numerical example. For instance, if a hundred points
are chosen to evaluate each variable of a function, one that
contains six variables would require 1012 points to resolve. As
such, more efficient methods of optimization have to be
investigated.

Golden Section Search

The one-dimensional approach to the golden section
search starts with three points, x1, x2 and x3; where
x1 < x3 < x2 and f(x3) < f(x1) and f(x2). The algorithm updates
the points so that the middle point has a value that is less than
that of the end points. Hence, based on the diagram below,
one would try x4 to get x1 < x3 < x4. Subsequently, x5 would be
chosen so that x3 < x5 < x4. Then, x6 would be chosen such
that x3 < x6 < x5 and so on and so forth.

Figure 2. The subsequent points are chosen so that the
middle point is always smaller than that of the end points.
(Picture courtesy of McGrew)

 This minimization technique gets its name from the fact
that the subsequent points are always chosen 0.38197 into the
larger segment, 0.38197 being the golden ratio. The algorithm
is completely robust and its accuracy improves linearly with
the number of function evaluations. In addition, even if the
function is a smooth one, one would still be able to obtain the
minimum of the function, albeit after many iterations.

To counter this effect of requiring many evaluations,
Brent’s method is used to supplement the golden section
search. When used together, the golden section search and
Brent’s method are perfect for minimizing one-dimensional
functions. However, as we will see later, this combinational
approach is ineffective when dealing with multivariable
functions.

Brent’s Method

As mentioned earlier on, the golden section search
technique is ineffective in dealing with smooth functions.
Brent’s method was thus created to overcome this limitation.
A caveat to take note of is that one has to actually know that
the function is parabolic near the minimum before Brent’s
method can be used. When this criterion is fulfilled, the
algorithm converges very rapidly and is always able to find a
minimum.

Brent’s algorithm makes use of three points to determine a
parabola. Once the pseudo-parabola has been defined, it is
used to find a next point. Safety checks are created within the
algorithm itself to prevent the parabola from oscillating
between two wrong points. This method ensures that a
minimum can always be found for functions that are
parabolic near the minimum. However, because the algorithm
requires such specific conditions for it to work, it is not as
robust as other search techniques, in particular the grid search
method. Nonetheless, it is useful to be able to call upon it
when the golden section search technique fails. When used
together, the golden section search and Brent’s method are
able to minimize virtually every one-dimensional function.
Unfortunately, this approach is not very useful when dealing
with multivariable functions, as far too many evaluations are
required for both search algorithms.

Figure 3. Brent’s method chooses the subsequent points by
creating a pseudo-parabola that passes through three points of
the original function. (Picture courtesy of McGrew)

Stepping Methods in Many Variables

It is a general rule in function minimization that one
should not expect good one-dimensional techniques to be
effective when extended to higher dimensionality. This is best
illustrated by the increase in complexity when applying the
grid search approach to multivariable functions. Nonetheless,
it is natural for us to try to minimize each variable separately,
one after the other. In doing so, we are effectively applying
one-dimensional function minimization techniques to each of
the variables of a multidimensional function. An example of
such an approach would be the single-parameter variation
technique, discussed in greater detail below. As we will soon
see, such a method is ineffective in dealing with
multidimensional functions, as the minimum of a particular
variable may not be found at the minimum of another
variable.

Single-Parameter Variation

Since the criteria for obtaining a minimum is finding a
stationary point, we want to try to make each variable’s
derivative vanish. The single-parameter variation approach
does this in a sequential manner, making each derivative
disappear one after the other. Hence, one would seek a
minimum for each variable using one of the techniques
described earlier on. However, an obvious flaw with this
approach is that when one has finished minimizing with
respect to xi+1, xi or earlier variables may no longer be at a
minimum, so one would generally have to start all over again.
Fortunately, the process does converge, although it may take
a long time to do so for functions of many variables [4]. As
such, this process is considered too inefficient to be applied to
most multivariable functions, and for that reason, we will not
be considering it in our implementation.

Simplex Method

To avoid the problem that we faced with the single-
parameter variation technique, it might be worthwhile trying
to minimize all the variables at once, instead of minimizing
one variable at a time. The simplex method is one instance of
such an approach. A simplex is a geometric solid in n-
dimensions, with n + 1 vertices. Hence, a simplex in two
dimensions would be a triangle, while a simplex in three
dimensions would be a tetrahedron. The method gets its name
from the way the algorithm is carried out. An initial simplex,
consisting of n + 1 points, with n being the number of
variables in the function to be minimized, is chosen at
random. The highest vertex is reflected across the other
surface and the process is repeated until the highest point is
not decreased. Subsequently, the simplex is shrunk and the
highest point is reflected across the other surface again. As
such, the minimization algorithm can be thought of as
crawling along the function, much like an amoeba would. In
fact, some refer to the simplex method as the amoeba

technique for this very reason [5]. The figure below best
demonstrates this procedure.

There are several benefits to the simplex procedure. Not
only is it very easy to implement, one also does not have to
assume that the function is smooth for the algorithm is able to
handle discontinuous functions with ease. Furthermore, it is
easy on the part of the programmer to visualize what is
happening, as the function is not minimized along any
particular direction. Instead, as mentioned before, the
function is minimized vertex by vertex.

Of course, as with all algorithms, there are some
limitations as to what the simplex method can accomplish.
The simplex technique is not as efficient as other high order
routines, which we will discuss later on. Not only does the
simplex algorithm require more function evaluations, its
precision does not increase very quickly. To further
compound matters, the simplex method has a tendency to be
tricked by long flat valleys, and the solution obtained would
often be far off from the intended target. The simplex
technique is also not very good at dealing with narrow valleys
as it takes many evaluations to reach the bottom of the valley,
where the solution often lies [6]. Nonetheless, the advantages
of the simplex procedure far outweigh its deficiencies. Hence,
the simplex method is extremely popular as an optimization
tool and we will be incorporating this towards the alignment
of the Kirkpatrick-Baez mirror configuration.

Figure 4. This figure illustrates the simplex procedure. In (a),
an initial simplex is picked randomly. Then, the highest
vertex is reflected across the other surface as seen in (b). The
process is repeated until the highest point is not decreased as
illustrated by (c). Finally, in (d), the simplex is shrunk in
preparation for the next series of minimization. (Picture
courtesy of McGrew)

Steepest Descent

After extolling the benefits of minimizing multivariable
functions in its entirety, we return back to our original
approach of minimizing a function one variable at a time,

albeit with some modifications to the method. Instead of
merely tackling the function, more information about the
function is used in the solving algorithm. In particular,
gradient methods make use of the first derivative of the
function in their minimization algorithms. The method of
steepest descent is but one instance of such an approach. It is
considered a gradient method, as it uses derivatives to predict
good trial points that are relatively far away. Do note that this
does not necessarily mean that the algorithm is following the
gradient, but only that the gradient is used to find the next
point in the minimization routine. In essence, the steepest
descent approach consists of a series of one-dimensional
minimizations, each one along the direction of the local
steepest descent, which is the gradient at the point where each
new search begins. Naturally, the direction of the gradient
would not be constant along a line, even for general quadratic
functions, so we would expect many iterative steps to be
necessary. Still, the method almost certainly guarantees
convergence for quadratic functions, which explains its
popularity as a minimization technique.

Since the algorithm involves minimization along each axis
in turn, it is apparent that the method requires an auxiliary
linear minimization approach. However, according to
Murphy’s Law of Minimization, function valleys never lie
along a primary direction [7]. A method is thus needed to help
determine a better direction for minimization. As a result, the
conjugate gradient direction search was created with this very
purpose in mind.

Figure 5. A pictorial representation of the search algorithm
used in the steepest descent method. Here, we are dealing
with two dimensions, so this gives us steps that look just like
the single parameter variation method with the axes rotated in
such a way that they line up with the gradient at the start
point. An unfortunate limitation of this approach is clearly
illustrated here: if each linear minimization is exact, then
successive searches must be in orthogonal directions. (Picture
courtesy of McGrew)

Conjugate Gradient Direction Search

In the method of conjugate gradients, successive one-
dimensional minimizations are performed along conjugate
directions with each direction being used only once per
iteration. This elegant approach allows the algorithm to
converge in as little as two iterations when dealing with
quadratic functions. It is also very effective in handling long
straight valleys, a condition that the steepest descent method
was unable to cope with [8]. Let us briefly explore how the
algorithm achieves this. Suppose that the function and its
gradient can be evaluated at two different points, and
This would give us the following differences, namely:
∆ = and ∆ where is the gradient at
each point, i being either 0 or 1. Then, if the function were
quadratic with hessian matrix , we would obtain ∆ .
Any vector orthogonal to ∆ would then be conjugate with
respect to . This can be expressed as:

,
which implies that there must be a method for obtaining
conjugate directions without prior knowledge of . This
technique would of course be based on the change in gradient
along a previous direction, which is exactly what the
conjugate gradient direction search method does [9].

As mentioned earlier, the conjugate gradient technique
utilizes successive one-dimensional minimizations. Unlike
the method of steepest descent, the minimizations are
performed along conjugate directions rather than along each
axis. This difference is what allows the conjugate gradient
method to follow long straight valleys. The first step of the
algorithm involves choosing an initial direction, . It is
taken as , where is the steepest descent vector
at . Next, we let the minimum along this direction be at
where the gradient is . Then, the next search direction ,
which we want to be conjugate to , must be a linear
combination of the only two vectors we have at hand:

,
where b is an arbitrary constant.
The conjugacy condition is:

 ,
or

 + b .
Since is a minimum along the direction as , the
direction is orthogonal to the gradient at , so that

. We are then left with:

so that the new conjugate direction is

.

This process is repeated to generate n directions, each one
conjugate to all the others. This simple formula holds for all
the successive conjugate directions, so that:

.

The conjugate gradient direction search method is much
more robust than the steepest descent approach and is a very
useful tool for optimizing functions. However, twisting
valleys can cause the conjugate directions being generated to
become degenerate. Also, implementing the algorithm is a
challenge in itself due to its complexity. Nonetheless, the pros
far outweigh the cons and thus, we will be incorporating this
towards the alignment of the Kirkpatrick-Baez mirror
focusing system.

Implementation towards Alignment of
Kirkpatrick-Baez Mirrors

Based on the various optimization techniques outlined
above, a suitable program incorporating the best elements of
each method needs to be developed. However, as we have
seen, no one method can be optimum in the sense that it can
be used on all functions. In addition, even for a given
function, it is highly unlikely to find a method that works
well in all regions, far from the minimum as well as near to it.
As such, we will attempt to tailor the program to the
function’s needs. A decision tree enabling the user to choose a
method for his function has been suggested by Fletcher [10].
While this is indeed ingenious, the user has to have some
prior knowledge of the function, a luxury one does not have
when attempting to align Kirkpatrick-Baez mirrors.

Therefore, we have decided to instead incorporate the
golden-section search, Brent’s method, the simplex method
and the conjugate gradient direction search algorithm into a
general program of sorts. The rationale for doing so is
because of the inherent advantages each approach brings to
the table. When used together, both the golden-section search
and Brent’s method are able to handle almost any one-
dimensional function. The simplex method, together with the
conjugate gradient search technique, can handle most
multivariable functions. However, both of these multivariable
optimization techniques require an auxiliary linear
minimization routine, which is exactly what the golden-
section search and Brent’s method are providing. Hence, if all
four routines are used simultaneously, then it is highly likely
that they would be able to give a good solution pertaining to
the optimum alignment of the mirrors.

When implementing the program, one also has to consider
the fact that the movement of mirror is being controlled by
three sets of motors. As each motor can only move in discrete
steps, the solution obtained from the program may not be
implementable. This is a consideration that the programmer
has to account for when creating the algorithm. Furthermore,

as mentioned earlier on, we will have to contend with the
issue of noise within the function itself. The optimization
algorithm will thus have to be robust enough to handle any
noise in the function values.

Results

 It turns out that the program, containing the four
optimization techniques, that was described in the previous
section is able to handle some noise within functions very
well. For the case of the alignment of the Kirkpatrick-Baez
mirrors, the program is able to give us good solutions, while
taking into account the fact that the motors controlling the
mirrors can only move in discrete step sizes. However, the
program is unable to handle anything more complicated than
parabolas with noise. As one is unable to tell what sorts of
functions the alignment of the mirrors can churn up, much
less what sort of noise may be produced within the function,
it is obvious that more work needs to be done in this field.
Still, for the most part, the program appears to work well in
that acceptable solutions, close to the minimum, can be
obtained for well-behaved parabolic functions.

Conclusions

In summary, various methods for optimizing one-
dimensional and multi-dimensional functions have been
presented. These techniques have been applied to the problem
of aligning a Kirkpatrick-Baez mirror focusing system, an
issue that can be thought of as minimizing a function of up to
six variables, the maximum degree of freedom that the
motors which control the mirrors can move in. As the motors
can only move in discrete steps, the minimization methods
that were described had to be modified as they could only
solve standard functions without any noise in them. In
addition, the function describing the mirror configuration is
subjected to noise. Thus, any algorithm hoping to obtain the
optimum alignment of the mirrors had to account for this as
well. A strategy to cope with these two issues was outlined,
and a program able to handle noise in parabolic functions,
while taking into account the discrete step size consideration,
was presented.

Acknowledgements

I would first like to thank my co-advisors, Tim Mooney
and Pete Jemian of the Beamline Controls and Data
Acquisition Group at the Advanced Photon Source
Engineering Support Division, for their invaluable guidance
and support, and for agreeing to supervise me throughout this
internship. I am also indebted to them for the many
discussions about research, academia, and life in general,
during my stay at Argonne National Laboratory. Thanks also
go out to all personnel involved in the Lee Teng Internship
Programme, all of whom I have learnt much from.

References

[1] X. He, J. Zhou, M. Bartlam, R. Zhang, J. Ma, Z. Lou, X.
Li, J. Li, A. Joachimiak, Z. Zeng, R. Ge, Z. Rao, and Y. Liu.
Crystal structure of the polymerase PAC–PB1N complex from
an avian influenza H5N1 virus. Nature. DOI10.1038 (2008).
[2] A. Bakulin, S. M. Durbin, T. Jach, and J. Pedulla. Fast
imaging of hard x rays with a laboratory microscope. Applied
Optics. Vol. 39, No. 19 (2000).
[3] F. James. Intrpretation of the shape of the likelihood
function around its minimum. Computer Physics
Communications. Vol. 20 (1980).
[4] W. W. Woo, S. A. Svoronos, and O. D. Crisalle. A
directional forgetting factor for single-parameter variations.
American Control Conference Proceedings. WP5 (1995).

[5] W. Rudin. Principles of mathematical analysis. McGraw-
Hill, New York (1976).
[6] R. B. Darst. Introduction to linear programming:
applications and extensions. Prentice Hall, New York (2001).
[7] W. H. Press, W. T. Vetterling, S.l A. Teukolsky and B. P.
Flannery. Numerical recipes in C: the art of scientific
computing. Cambridge University Press, Cambridge (1992).
[8] M. R. Hestenes, E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Research of
the National Bureau of Standards. Vol. 49, No. 6 (1952).
[9] F. James. Function Minimization. CERN Publications,
Geneva (1967).
[10] R. Fletcher. Methods for the solution of optimization
problems. Computer Physics Communication. Vol. 3 (1972).

